p-group, metabelian, nilpotent (class 3), monomial
Aliases: C23.7D4, C23.4C23, 2+ 1+4.2C2, (C2×C4).7D4, C23⋊C4⋊4C2, C2.19C22≀C2, C22⋊C4⋊2C22, (C22×C4)⋊2C22, C22.17(C2×D4), (C2×D4).10C22, C22.D4⋊1C2, SmallGroup(64,139)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.7D4
G = < a,b,c,d,e | a2=b2=c2=d4=1, e2=c, ab=ba, ac=ca, dad-1=eae-1=abc, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, ede-1=cd-1 >
Subgroups: 161 in 80 conjugacy classes, 27 normal (6 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C4○D4, C23⋊C4, C22.D4, 2+ 1+4, C23.7D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C22≀C2, C23.7D4
Character table of C23.7D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | |
size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 2i | 0 | 0 | 0 | complex faithful |
ρ16 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | -2i | 0 | 0 | 0 | complex faithful |
(2 6)(3 9)(4 14)(7 13)(8 10)(12 16)
(1 15)(2 6)(3 13)(4 8)(5 11)(7 9)(10 14)(12 16)
(1 11)(2 12)(3 9)(4 10)(5 15)(6 16)(7 13)(8 14)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 10 11 4)(2 3 12 9)(5 8 15 14)(6 13 16 7)
G:=sub<Sym(16)| (2,6)(3,9)(4,14)(7,13)(8,10)(12,16), (1,15)(2,6)(3,13)(4,8)(5,11)(7,9)(10,14)(12,16), (1,11)(2,12)(3,9)(4,10)(5,15)(6,16)(7,13)(8,14), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,10,11,4)(2,3,12,9)(5,8,15,14)(6,13,16,7)>;
G:=Group( (2,6)(3,9)(4,14)(7,13)(8,10)(12,16), (1,15)(2,6)(3,13)(4,8)(5,11)(7,9)(10,14)(12,16), (1,11)(2,12)(3,9)(4,10)(5,15)(6,16)(7,13)(8,14), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,10,11,4)(2,3,12,9)(5,8,15,14)(6,13,16,7) );
G=PermutationGroup([[(2,6),(3,9),(4,14),(7,13),(8,10),(12,16)], [(1,15),(2,6),(3,13),(4,8),(5,11),(7,9),(10,14),(12,16)], [(1,11),(2,12),(3,9),(4,10),(5,15),(6,16),(7,13),(8,14)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,10,11,4),(2,3,12,9),(5,8,15,14),(6,13,16,7)]])
G:=TransitiveGroup(16,146);
(1 13)(2 8)(3 5)(4 16)(6 12)(7 9)(10 14)(11 15)
(2 10)(4 12)(6 16)(8 14)
(1 9)(2 10)(3 11)(4 12)(5 15)(6 16)(7 13)(8 14)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 13 9 7)(2 6 10 16)(3 15 11 5)(4 8 12 14)
G:=sub<Sym(16)| (1,13)(2,8)(3,5)(4,16)(6,12)(7,9)(10,14)(11,15), (2,10)(4,12)(6,16)(8,14), (1,9)(2,10)(3,11)(4,12)(5,15)(6,16)(7,13)(8,14), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,13,9,7)(2,6,10,16)(3,15,11,5)(4,8,12,14)>;
G:=Group( (1,13)(2,8)(3,5)(4,16)(6,12)(7,9)(10,14)(11,15), (2,10)(4,12)(6,16)(8,14), (1,9)(2,10)(3,11)(4,12)(5,15)(6,16)(7,13)(8,14), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,13,9,7)(2,6,10,16)(3,15,11,5)(4,8,12,14) );
G=PermutationGroup([[(1,13),(2,8),(3,5),(4,16),(6,12),(7,9),(10,14),(11,15)], [(2,10),(4,12),(6,16),(8,14)], [(1,9),(2,10),(3,11),(4,12),(5,15),(6,16),(7,13),(8,14)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,13,9,7),(2,6,10,16),(3,15,11,5),(4,8,12,14)]])
G:=TransitiveGroup(16,165);
(1 9)(2 12)(3 13)(4 14)(5 11)(6 10)(7 16)(8 15)
(2 6)(3 8)(10 12)(13 15)
(1 5)(2 6)(3 8)(4 7)(9 11)(10 12)(13 15)(14 16)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)
(1 7 5 4)(2 3 6 8)(9 14 11 16)(10 15 12 13)
G:=sub<Sym(16)| (1,9)(2,12)(3,13)(4,14)(5,11)(6,10)(7,16)(8,15), (2,6)(3,8)(10,12)(13,15), (1,5)(2,6)(3,8)(4,7)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,7,5,4)(2,3,6,8)(9,14,11,16)(10,15,12,13)>;
G:=Group( (1,9)(2,12)(3,13)(4,14)(5,11)(6,10)(7,16)(8,15), (2,6)(3,8)(10,12)(13,15), (1,5)(2,6)(3,8)(4,7)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,7,5,4)(2,3,6,8)(9,14,11,16)(10,15,12,13) );
G=PermutationGroup([[(1,9),(2,12),(3,13),(4,14),(5,11),(6,10),(7,16),(8,15)], [(2,6),(3,8),(10,12),(13,15)], [(1,5),(2,6),(3,8),(4,7),(9,11),(10,12),(13,15),(14,16)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16)], [(1,7,5,4),(2,3,6,8),(9,14,11,16),(10,15,12,13)]])
G:=TransitiveGroup(16,173);
(1 16)(2 11)(3 14)(4 9)(5 10)(6 13)(7 15)(8 12)
(1 8)(2 6)(3 5)(4 7)(9 15)(10 14)(11 13)(12 16)
(1 3)(2 4)(5 8)(6 7)(9 11)(10 12)(13 15)(14 16)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)
(1 2 3 4)(5 7 8 6)(9 10 11 12)(13 16 15 14)
G:=sub<Sym(16)| (1,16)(2,11)(3,14)(4,9)(5,10)(6,13)(7,15)(8,12), (1,8)(2,6)(3,5)(4,7)(9,15)(10,14)(11,13)(12,16), (1,3)(2,4)(5,8)(6,7)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,2,3,4)(5,7,8,6)(9,10,11,12)(13,16,15,14)>;
G:=Group( (1,16)(2,11)(3,14)(4,9)(5,10)(6,13)(7,15)(8,12), (1,8)(2,6)(3,5)(4,7)(9,15)(10,14)(11,13)(12,16), (1,3)(2,4)(5,8)(6,7)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,2,3,4)(5,7,8,6)(9,10,11,12)(13,16,15,14) );
G=PermutationGroup([[(1,16),(2,11),(3,14),(4,9),(5,10),(6,13),(7,15),(8,12)], [(1,8),(2,6),(3,5),(4,7),(9,15),(10,14),(11,13),(12,16)], [(1,3),(2,4),(5,8),(6,7),(9,11),(10,12),(13,15),(14,16)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16)], [(1,2,3,4),(5,7,8,6),(9,10,11,12),(13,16,15,14)]])
G:=TransitiveGroup(16,177);
C23.7D4 is a maximal subgroup of
C42.14D4 C23.7C24 C24⋊C23 2+ 1+4.C6 C23.S4
C22⋊C4⋊D2p: C42⋊4D4 C42⋊6D4 C23.5D12 C22⋊C4⋊D6 C23.5D20 C22⋊C4⋊D10 C23.5D28 C22⋊C4⋊D14 ...
(C2×D4).D2p: C42.13D4 C23.10C24 2+ 1+4.5S3 2+ 1+4.2D5 2+ 1+4.2D7 ...
C23.7D4 is a maximal quotient of
C24.14D4 (C2×C4).SD16 C24.17D4 C4⋊C4.20D4 C24.22D4 C24.180C23 C24.182C23
C23.D4p: C23.5D8 C23.5D12 C23.5D20 C23.5D28 ...
C22⋊C4⋊D2p: C24.31D4 C24.33D4 C22⋊C4⋊D6 C22⋊C4⋊D10 C22⋊C4⋊D14 ...
(C2×D4).D2p: C4⋊C4.12D4 (C2×C4).5D8 C24.15D4 C24.16D4 C4⋊C4.18D4 C4⋊C4.19D4 C24.18D4 2+ 1+4⋊2C4 ...
Matrix representation of C23.7D4 ►in GL4(𝔽5) generated by
1 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 4 |
4 | 4 | 4 | 1 |
1 | 1 | 4 | 1 |
4 | 1 | 4 | 4 |
4 | 1 | 1 | 1 |
4 | 4 | 4 | 1 |
4 | 4 | 1 | 4 |
4 | 1 | 4 | 4 |
1 | 4 | 4 | 4 |
G:=sub<GL(4,GF(5))| [1,0,0,0,0,4,0,0,0,0,4,0,0,0,0,1],[0,0,0,1,0,0,1,0,0,1,0,0,1,0,0,0],[4,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[4,1,4,4,4,1,1,1,4,4,4,1,1,1,4,1],[4,4,4,1,4,4,1,4,4,1,4,4,1,4,4,4] >;
C23.7D4 in GAP, Magma, Sage, TeX
C_2^3._7D_4
% in TeX
G:=Group("C2^3.7D4");
// GroupNames label
G:=SmallGroup(64,139);
// by ID
G=gap.SmallGroup(64,139);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,192,121,362,255,730]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^4=1,e^2=c,a*b=b*a,a*c=c*a,d*a*d^-1=e*a*e^-1=a*b*c,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=c*d^-1>;
// generators/relations
Export